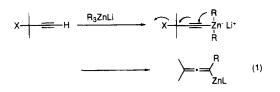
Preparation of (1-Cyclopropylidenealkyl)zinc Reagents by the Reaction of Homopropargylic Sulfonates with Triorganozincates

Toshiro Harada,* Hiroki Wada, and Akira Oku*

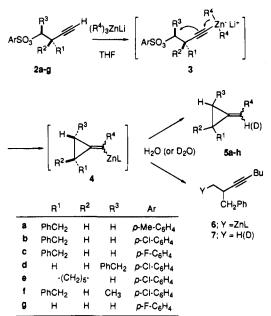

Department of Chemistry, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan

Received May 30, 1995

Methylenecyclopropanes, which are cumulated combination of a cyclopropane and a double bond,¹ exhibit unique reactivity in ring-opening reactions, cycloadditions, and transformations to cyclopropanes.² Considerable attention has been focused on their use as synthetic building blocks.^{1,3-5} (1-Cyclopropylidenealkyl)metals 1 may serve as useful reagents for the preparation of functionalized alkylidenecyclopropanes.⁶ However, little effort has been expended on their generation and synthetic applications. Previously, Merril and Negishi reported the generation of organoboron derivatives 1 (M =BR₂) via a 1,2-migration reaction of alkynylborate $LiB(R)_3C \equiv CCH_2CHOTs.^7$ The organoboron derivatives were not used in the preparation of functionalized alkylidenecyclopropanes but converted oxidatively into cyclopropyl ketones.⁸

We reported recently that the reaction of propargylic substrates with triorganozincates affords homologated allenic zinc reagents through a mechanism involving an initial metalation of the acetylenic proton and a 1,2migration of the resulting alkynylzincates (eq 1).9-11 The

(1) de Meijere, A.; Wessjohann, L. Synlett 1990, 20.


(2) (a) Berson, J. A. In *Rearrangements in Ground and Excited States*; de Mayo, P., Ed.; Academic Press: New York, 1980; p 311. (b) Binger, P.; Büch, H. M. *Top. Curr. Chem.* **1986**, *135*, 77. (c) Salaün, J. In The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; Wiley: New York, 1987; p 809. (d) Misslitz, U.; de Meijire, A. In Methoden der organischen Chemie; Huben-Weyl; Regitz, N., Ed.; Thieme: Stuttgart 1989; Vol. E 19B, p 664.

(3) (a) Stolle, A.; Ollivier, J.; Piras, P. P.; Salaün, J.; de Meijere, A. J. Am. Chem. Soc. **1992**, 114, 4051 and references cited therein. (b) McGaffin, G.; Michalski, S.; Stolle, A.; Bräse, S.; de Meijere, A. Synlett 1992, 585. (c) Thiemann, T.; Gehrcke, B.; de Meijere, A. Synlett 1993, 483 and references cited therein. (d) Es-Sayed, M.; Heiner, T.; de Meijere, A. Synlett 1993, 57 and references cited therein. (e) Stolle, A.; Becker, H.; Salaün, J.; de Meijere, A. Tetrahedron Lett. 1994, 35, 3517. (f) Stolle, A.; Becker, H.; Salaün, J.; de Meijere, A. Tetrahedron Lett. 1994, 35, 3521.

(4) (a) Nakamura, E.; Yamago, S.; Ejiri, S.; Dorigo, A. E.; Morokuma,
K. J. Am. Chem. Soc. 1991, 113, 3183. (b) Ejiri, S.; Yamago, S.;
Nakamura, E. J. Am. Chem. Soc. 1992, 114, 8707. (c) Yamago, S.; Ejiri,
S.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 5344.

(5) (a) Singleton, D. A.; Church, K. M. J Org. Chem. 1990, 55, 4780. (b) Singleton, D. A.; Huval, C. C.; Church, K. M.; Priestley, E. S. Tetrahedron Lett. 1991, 32, 5765. (c) Huval, C. C.; Singleton, D. A. Tetrahedron Lett. 1994, 35, 689. (d) Huval, C. C.; Singleton, D. A. Singleton, D. A. Synlett 1994, 273. (e) Huval, C. C.; Singleton, D. A. J. Org. Chem. 1994, 59, 2020. (f) Monti, H.; Rizzotto, D.; Léandri, G.; Monti, J.-P. Tetrahedron Lett. 1994, 35, 2855.

facile migration observed for the alkynylzincates derived from propargylic substrates prompted us to investigate the reaction of those derived from homopropargylic sulfonates 2 with the hope of developing a method for the preparation of (1-cyclopropylidenealkyl)zinc reagents 4 (Scheme 1).

Treatment of tosylate 2a with (Bu)₃ZnLi (2.0 equiv) in THF at 0 °C for 1 h and quenching of the mixture with D_2O gave methylenecyclopropane **5a** ($R^4 = Bu$) (E:Z = $(1.9:1)^{12}$ and alkyne 7 in 75% and 8% yields, respectively. ¹H NMR analysis of the major product showed incorporation of deuterium (98%-d) at the olefinic carbon, demonstrating generation of (1-cyclopropylidenepentyl)zinc (4a). The yield of 7 increased to 42% when a similar reaction was carried out at 0 °C for 6 h,13 suggesting that 4a underwent a ring-opening reaction leading to homopropargylic zinc 6. The ring-opening reaction was retarded completely at -20 °C, but the starting material was not

(8) For the related reaction of (1-cyclohexylidenealkyl)boron species, see: Corey, E. J.; Seibel, W. L. Tetrahedron Lett. 1986, 27, 909.
(9) (a) Katsuhira, T.; Harada, T.; Maejima, K.; Osada, A.; Oku, A. J. Org. Chem. 1993, 58, 6166. (b) Harada, T.; Osada, A.; Oku, A. Tetrahedron Lett. 1995, 36, 723.
(10) For synthetic use of triorganozincates see: (a) Isobe M: Kondo.

Tetrahedron Lett. 1995, 36, 723.
(10) For synthetic use of triorganozincates, see: (a) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977, 679. (b) Tückmantel, W.; Ohshima, K.; Nozaki, H. Chem. Ber. 1986, 1581. (c) Kjonaas, R. A.; Vawter, E. J. J. Org. Chem. 1986, 51, 3993. (d) Kjonaas, R. A.; Hoffer, R. K. J. Org. Chem. 1988, 53, 4133. (e) Harada, T.; Hara, D.; Hattori, K.; Oku, A. Tetrahedron Lett. 1988, 29, 3821-3824. (f) Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. 1989, 54, 1785. (g) Takahashi, T.; Nakazawa, N.; Kanoh, M.; Yamamoto, K. Tetrahedron Lett. 1990, 31, 7349 (b) Harada, T.; Katsubira, T.; Kusu, Y.; Wu, A. Tetrahedron T.; Katsubira, T.; Kakazawa, N.; Kanoh, M.; Yamamoto, K. Tetrahedron Lett. 1990, 11, 7349 (b) Harada, T.; Katsubira, T.; Kotani, Y.; Oku, A. Tetrahedron 1.; Nakažawa, N.; Kahon, M.; Famandob, K. Tetrahedron Lett. 1990, 31, 7349. (h) Harada, T.; Katsuhira, T.; Kotani, Y.; Oku, A. Tetrahedron Lett. 1991, 32, 1573. (i) Harada, T.; Katsuhira, T.; Hattori, K.; Oku, A. J. Org. Chem. 1993, 58, 2958. (j) Harada, T.; Katsuhira, T.; Hara, D.; Kotani, Y.; Maejima, K.; Kaji, R.; Oku, A. J. Org. Chem. 1993, 58, 4897. (k) Harada, T.; Katsuhira, T.; Hattori, K.; Oku, A. Tetrahedron 1994, 50, 7987.(l) Lipshutz, B. H.; Wood, M. R. J. Am. Chem. Soc. 1994, 115 115, 12625.

(11) For 1,2-migration of organozincates, see: Negishi, E.; Akiyoshi, K. J. Am. Chem. Soc. 1988, 110, 646 and ref 10e,h-j.

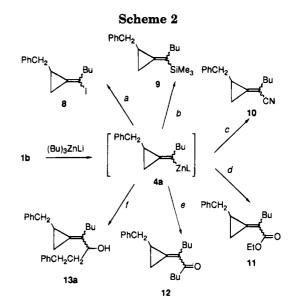
(12) Configurations of (E)- and (Z)-5 were determined by NOESY experiments (for $\mathbf{5f}, \mathbf{g}$) and by the observation of large differences ($\Delta \delta$ 0.2-1.1 ppm) in the ¹H chemical shifts of the nonequivalent benzylic methylene protons of (Z)-5a-f,h.

(13) Methylenecyclopropane 5a (E.Z = 1:1.6) was obtained in 53% vield.

⁽⁶⁾ Lithiation of methylenecyclopropane proceeds at the 2-position: Thomas, E. W. Tetrahedron Lett. 1983, 24, 1467. Sternberg, E.; Binger, P. Tetrahedron Lett. 1985, 26, 301.

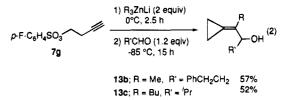
⁽⁷⁾ Merril, R. E.; Allen, J. L.; Abramovitch, A.; Negishi, E. Tetra-hedron Lett. 1977, 1019.

Table 1. Preparation of (1-Cyclopropylidenealkyl)zinc **Reagents** 4^a


entry	sub- strate	zincate R ⁴	$condns^b$	product	yield, ^c % (d-cont. %) ^d	$\mathbf{E}:\mathbf{Z}^{e}$
1	2b	Bu	Α	5a	93 (95)	2.4:1
2 ^f	2b	Bu	Α	5a	91 (88)	2.2:1
3	2c	Bu	Α	5a	88 (97)	2.2:1
4	2b	*Bu	Α	5b	81 (92)	$3.8:1^{g}$
5	$2\mathbf{b}$	^t Bu	в	5c	71 (91)	5.3:1
6	2b	Me	в	5d	65 (75)	$1.6:1^{g}$
7	2c	$TMSCH_2$	В	5e	59	1.2:1
8	2b	Ph -	С	5f	76 (92)	1:2.4
9	2d	Bu	С	5a	78 (93)	1:1.9
10	2e	Bu	Ă	5g	93	9.5:1
11	2 f	Bu	Ċ	5h	99	3.4:1

 a Unless otherwise noted, reactions were carried out by using 2.0 equiv of zincates in THF. b A: -20 °C, 6 h. B: -10 °C, 6 h. C: 0 °C, 6 h. ^c Isolated yield. ^d Mean values of (E)- and (Z)-5 determined by ¹H NMR analyses. ^e Unless otherwise noted, ratios were determined by a capillary GC analyses. ^f The reaction was carried out by using 1.5 equiv of the zincate. ^g Determined by ¹H NMR analyses.

fully consumed after 6 h.¹⁴ Finally, efficient generation of 4a was realized by using more reactive p-chloro- and p-fluorobenzenesulfonates 2b,c as substrates. Thus, the reactions of 2b and 2c at -20 °C for 6 h gave 5a of high deuterium content in 93% and 88% yields, respectively (entries 1 and 3 in Table 1).


A variety of triorganozincates were used successfully in the preparation of the corresponding (1-cyclopropylidenealkyl)zinc reagents (entries 1-8). Temperatures above -20 °C were required in the reactions of the less reactive zincates, such as Me₃ZnLi, Ph₃ZnLi, and (TM-SCH₂)₃ZnLi. However, no ring-opening reactions occurred for the resulting organozinc species under these conditions. Not only primary but also secondary sulfonates 2d,f underwent the 1,2-migration/cyclization efficiently (entries 9 and 11). Formation of 2',3'-cis product 5h¹⁵ in the reaction of anti homopropargylic sulfonate **2f** demonstrated that the cyclization proceeded with inversion of stereochemistry at the electrophilic carbon. Except for the reaction of (Ph)₃ZnLi, 1,2-migration and cyclization of alkynylzincates 3 took place preferentially at the same face of the triple bond. Thus, for example, in the reaction with (Bu)₃ZnLi, both 2b and 2d afforded the same product 5a, but with opposite stereoselectivity (entries 1 and 9). Higher selectivities were observed when an alternative anti mode of 1,2migration/cyclization was sterically unfavorable (entries 5 and 10). The starting homopropargylic sulfonates are readily available,^{16,17} so their reactions with triorganozincates can be easily used in the preparation of a variey of (1-cyclopropylidenealkyl)zinc reagents.

Organozinc reagents 4, thus generated, underwent a coupling reaction with a variety of electrophiles (I2, TMSCI, TsCN,¹⁸ ClCO₂Et, BuCOCl,¹⁹ and aldehydes) to furnish functionalized methylenecyclopropanes 8-13

^a I₂ (5 equiv), -85 °C, 77%, E:Z = 1:2.3. ^b TMSCl (7 equiv), -85 to 0 °C, 56%, E:Z = 1:1.3. ° TsCN (2 equiv), -85 °C, 73%, E:Z =1:2.1. d ClCO₂Et (4.5 equiv), PdCl₂(PPh₃)₂ (5 mol %), -20 °C to rt, 65%. E:Z = 1:3.4. ^e BuCOCl (4.5 equiv), PdCl₂(PPh₃)₂ (5 mol %), -20 °C to rt, 61%. ^f PhCH₂CH₂CHO (1.0 equiv), -85 °C, 65%.

(Scheme 2 and eq 2). It should be noted that, in the

reaction with aldehydes and TsCN, organozinc reagents 4 underwent a transfer of the 1-(cyclopropylidene)alkyl group in preference to the alkyl group.²⁰ Thus, for example, reaction of 4b with 1 equiv of 3-phenylpropanal at -85 °C for 15 h afforded adduct 13a in 65% yield with minor formation of the butyl adduct (6%).²¹

Elucidation of the full scope of the reaction as well as utilization of homopropargylic zinc species produced by the ring-opening of 4 are currently underway in our laboratories.

Acknowledgment. This work was supported partially by a grant from the Ministry of Education, Science, and Culture, Japanese Government (Grant-in-Aid for Scientific Research on Priority Areas No. 06227239).

Supporting Information Available: Spectral data (¹H NMR, ¹³C NMR, IR, MS, and/or HRMS) for new products (4 pages).

JO9509667

⁽¹⁴⁾ The reaction afforded 5a in 55% yield (E:Z = 2.3:1) with the recovery of **2a** (32%).

⁽¹⁵⁾ The cis stereochemistry of (E)-5h was determined by a NOESY experiment in which NOE was observed between the methyl and the benzylic methylene protons.

⁽¹⁶⁾ Sulfonates 2a-f were prepared by the reaction of allenic zinc reagents with aldehydes^{9,15} and the subsequent sulfonylation of the resulting homopropargylic alcohols

^{(17) (}a) Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Org. Chem. 1982,

 ^{47, 2225. (}b) Zweifel, G.; Hahn, G. J. Org. Chem. 1984, 49, 4565.
 (18) Klement, I.; Lennick, K.; Tucker, C. E.; Knochel, P. Tetrahedron Lett. 1993, 34, 4623

⁽¹⁹⁾ Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.-T.; Miller, J. A.; Stoll, A. T. *Tetrahedron Lett.* **1983**, *24*, 5181.

⁽²⁰⁾ It is probable that initially formed organozinc 4 $(L = R^4)$ reacts reversibly with excess $(R^4)_3$ ZnLi to be converted partly to the more reactive zincate 4 (ZnL = $Zn(R^4)_2Li$), from which the reaction with aldehydes may proceed.

⁽²¹⁾ Typical procedure: Preparation of methylenecyclopropane derivative 10: To a solution of ZnCl₂ (106 mg, 0.78 mmol) in THF (2.4 mL) was added BuLi (1.62 M in hexane, 1.4 mL, 2.3 mmol) at 0 °C, and the mixture was stirred for 15 min. After addition of a THF (2 mL) solution of 2b (131 mg, 0.39 mmol) to the resulting solution of $(Bu)_3$ ZnLi at -85 °C, the mixture was stirred at -20 °C for 6 h. The mixture was then allowed to cool back to -85 °C, and then a THF (1 mL) solution of TsCN (142 mg, 0.78 mmol) was added. After being stirred for 15 h at -85 °C, the mixture was poured into 1 N HCl and extracted twice with ether. The combined organic layers were washed with aqueous NaHCO₃, dried over MgSO₄, and concentrated in vacuo. Purification of the residue by flash chromatography (SiO₂, eluting with 4% ethyl acetate in hexane) afforded, in the order of elution, 15.2 mg (19%) of **5a** and 64.2 mg (73%) of **10a** (Z:E = 2.1:1).